Hopf Algebra Extension of a Zamolochikov Algebra and Its Double
نویسنده
چکیده
The particles with a scattering matrix R(x) are defined as operators Φi(z) satisfying the relation R j′,i′ i,j (x1/x2)Φi′(x1)Φj′ (x2) = Φi(x2)Φj(x1). The algebra generated by those operators is called a Zamolochikov algebra. We construct a new Hopf algebra by adding half of the FRTS construction of a quantum affine algebra with this R(x). Then we double it to obtain a new Hopf algebra such that the full FRTS construction of a quantum affine algebra is a Hopf subalgebra inside. Drinfeld realization of quantum affine algebras is included as an example. This is a further generalization of the constructions in [DI].
منابع مشابه
A note on the new basis in the mod 2 Steenrod algebra
The Mod $2$ Steenrod algebra is a Hopf algebra that consists of the primary cohomology operations, denoted by $Sq^n$, between the cohomology groups with $mathbb{Z}_2$ coefficients of any topological space. Regarding to its vector space structure over $mathbb{Z}_2$, it has many base systems and some of the base systems can also be restricted to its sub algebras. On the contrary, in ...
متن کاملAdjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.
For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of Hom-tensor relations have been st...
متن کاملGorenstein global dimensions for Hopf algebra actions
Let $H$ be a Hopf algebra and $A$ an $H$-bimodule algebra. In this paper, we investigate Gorenstein global dimensions for Hopf algebras and twisted smash product algebras $Astar H$. Results from the literature are generalized.
متن کاملNOTES ON REGULAR MULTIPLIER HOPF ALGEBRAS
In this paper, we associate canonically a precyclic mod- ule to a regular multiplier Hopf algebra endowed with a group-like projection and a modular pair in involution satisfying certain con- dition
متن کاملA Self-dual Hopf Algebra on Double Partially Ordered Sets
Let D be the set of isomorphism types of finite double partially ordered sets, that is sets endowed with two partial orders. On ZD we define a product and a coproduct, together with an internal product, that is, degree-preserving. With these operations ZD is a Hopf algebra, self-dual with respect to a scalar product which counts the number of pictures (in the sense of Zelevinsky) between two do...
متن کامل